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Abstract

This paper describes a video eye-tracking algorithm which searches for the best fit of the pupil
modeled as a circular disk. The algorithm is robust to common image artifacts such as the droopy
eyelids and light reflections while maintaining the measurement resolution available by the centroid
algorithm. The presented algorithm is used to derive the pupil size and center coordinates, and can
be combined with iris-tracking techniques to measure ocular torsion. A comparison search method
of pupil candidates using pixel coordinate reference lookup tables optimizes the processing
requirements for a least square fit of the circular disk model. This paper includes quantitative
analyses and simulation results for the resolution and the robustness of the algorithm. The
algorithm presented in this paper provides a platform for a noninvasive, multidimensional eye
measurement system which can be used for clinical and research applications requiring the precise

recording of eye movements in three-dimensional space.

1.0 Introduction

Several different measurement techniques have been utilized to study the reflexive and voluntary
control of eye movements, and these methods have had significant diagnostic value in tests of
visual, oculomotor, and vestibular function. However, a survey of the technical limitations and
artifacts inherent in the most commonly used measurement systems explains why most clinical and
research applications have been restricted to the horizontal plane [1, 2]. Recently, considerable
research has been conducted on the neural processes involved in the coding and control of eye
movements in three-dimensional (3D) space. For example, for the vestibular system to stabilize
gaze and ensure clear vision, there must be a spatial coordinate transformation between vestibular
and oculomotor 3-D reference frames to ensure that eye movements compensate for the head
movement stimulus [3]. Most natural visual and vestibular stimuli contain combinations of
transitional, rotational, and tilt components which elicit a different type of compensatory eye
movement. Clearly a multidimensional measurement system is required to adequately characterize
reflex pathways which are involved in the 3D control of eye movements. Indeed, patient data from
various otolith-ocular tests have already demonstrated the diagnostic potential of using a

measurement system with this capability [4].



Although the magnetic search coil technique is generally regarded as the most precise measure of
3D eye movements, there are several disadvantages with this method which will continue to limit
its usage with human patients. The scleral contact lens wormn by the subject during this procedure
must fit tightly to limit slippage artifacts, and consequently have potential side effects that restrict
the available test time, such as increased intraocular pressure and degradation in visual acuity due
to corneal deformation [5-8]. In addition, the choice of material composition for the surround and

restraint equipment is often constrained to avoid magnetic field distortion artifacts.

Of the other measurement systems available, noninvasive video image recording appears to be the
most practical alternative for multidimensional eye movement analysis. Under proper illumination
which usually uses the infrared light spectrum, the iris image pattern is characterized by high
spatial frequency components of angular direction obtained from the iris muscle striations, whereas
the pupil area consists of a contiguous uniform dark area. Then, characteristics of the iris and
pupil patterns can be used to track horizontal and vertical eye movements, torsion angle and the
pupil radius. Recent advances in video and computer technologies have resolved many of the
image quality and data processing difficulties with this approach. Another practical advantage of
this approach is the ability to record eye images on videotape for later re-analysis. This option
eliminates the risk of failed measurements due to the poor performance of the eye tracking system.
However, a major disadvantage has been sensitivity to image noise and artifacts, and a limited data
sampling rate which is confined by the video frame rate. The problem of limited data sampling rate
could be overcome by using high-speed video even though it adds complexity to the system. The
sensitivity to the image quality is more inherent to the video eye tfacking method, and is highly

dependent on the performance of eye image analysis algorithm.

Since the video eye tracking method mostly generates output in the form of image screen
coordinate, the output should be properly calibrated to get data in the form of eye rotation angle.
The design of proper calibration process is an important and difficult issue, and will not be covered
in this paper. This paper presents an algorithm to measure the pupil location and size in the form
of image screen coordinate. All the resolution and accuracy analyses in this paper show the
performance of the algorithm in registering the pupil parameters in the form of image screen

coordinate.

Two main approaches in the eye image analysis algorithm have been either to track small two-
dimensional landmarks in the eye image and directly obtain all parameters of interest, or
alternatively to sequentially track the size and location of pupil first and then obtain torsion

measurements from the iris pattern at some position relative to the pupil center.



In the landmark tracking approach, the landmark templates are taken from eye parts with distinctive
patterns such as the iris, blood vessels on sclera, or artificial marks on contact lenses. - By tracking
locations of landmarks at two different locations, relative movement of the eyeball can be
measured. Torsion angles can also be measured by calculating angles of two template locations
[9]. This approach is unique in that eye location and counterroll measurements are not separate
processes, and the location of two templates can be used to calculate both eye location and
counterroll simultaneously. A major drawback of this approach is the vulnerability of templates to
eye movements. If torsion angles are not negligible, templates are rotated and changed in
rectilinear coordinates, corrupting cross-correlation calculations. To overcome this problem,
templates should be taken with respect to polar coordinates, the center of which is on the axis of
torsion movements. However, the axis of torsion movement cannot be determined until the
locations of the templates are measured. The only instance when templates from polar coordinates
are available is when the eye is stationary in horizontal and vertical directions so that the fixed
center of the pupil can be used as the axis of counterroll. Another way to overcome the problem is
to use a rotation invariant artificial landmark or a rotation invariant image basis function [10]. The
use of the artificial landmark requires the subject to wear contact lenses, and the image basis
function is computationally expensive, therefore, neither way seems to be practical in noninvasive
video eye tracking applications. Consequently, the landmark tracking method can only be applied
to horizontal and vertical eye movement with very little counterroll, or counterroll movements with
very little horizontal and vertical movements. Even though the method is designed to measure all
three movements, errors are inevitable if horizontal, vertical, and counterroll movements are

present simultaneously.

Many eye image analysis algorithms are adopting sequential measurements of the pupil parameters
and torsion angle with the pupil center as the rotation axis [11-16]. In the sequential measurement
approach, the pupil-tracking process is separated from the torsion calculation process. For this
approach, the resolution of the torsion measurements will depend to a great degree on the accuracy
of each system to locate the pupil center. Even a small error of one or two image pixels in locating
the pupil center could induce the torsion error of a couple of degrees, no matter how advanced the
torsion measuring algorithm is [13]. This paper presents a pupil-tracking algorithm which makes
precise measurement of the pupil center and size, therefore allowing the following torsion

calculation as accurate as it can get.

The pupil-tracking algorithms could be divided into edge-detection and area-detection methods.
Edge-detection methods determine pupil size and position by locating the pupil-iris boundary.
After obtaining multiple edge points around the pupil, the coordinates of the points are usually
either averaged or fitted to an arc to calculate the center of the pupil and its diameter [11, 13].



Although the edge detection algorithms are conceptually simple, they are inherently susceptible to
image artifacts that occur in the pupil boundary regions. It is not an easy task to automatically
distinguish corrupted pupil boundary and remove it from the arc-fitting calculation. Even when
successful, the edge-finding operation is susceptible to high-frequency random image noise which

may produce outliers for the arc-fitting calculation.

The area detection algorithms can benefit from a larger signal-to-noise ratio; therefore, the
measurement resolution can be better than the edge detection methods [18]. Most area detection
algorithms published to date have relied primarily on the centroid algorithm which calculates the
center-of-mass of all the black pixels in the thresholded eye images [12, 14-16, 19, 20]. Since the
centroid algorithm assumes that the entire pupil area exclusively becomes black after the
thresholding, it is also subject to measurement error when portions of the pupil are occluded or
when shadows outside the pupil boundary meet the pupil threshold criteria. The case of occluded
pupil frequently happens in real situations when the upper eyelid droops for various reasons and
partly covers the upper part of pupil, or when light reflecting from the anterior surface of the

cornea, called Purkinje image, appears in a nonnegligible size on eye images.

Some systems track the location of the Purkinje image, and use it as a basis of compensating
relative head movement with respect to the video camera [14, 18]. They assumed the Purkinje
images fall inside the pupil boundary, and use another threshold value for detecting the Purkinje
images. Once the sizes and locations are calculated, the image areas occupied by the Purkinje
images are regarded as a part of pupil area, and then the size and location of the pupil are
calculated. The major problem in this approach occurs when the Purkinje image falls on the pupil
boundary and some area of the Purkinje image belongs to the region inside the pupil and another
area belongs to the region outside. In this case, it is very difficult to discriminate them and to
correctly compensate the occluded pupil area. Also, the shape of the Purkinje image can get
severely deformed when it is close to the iris and sclera boundary, since the cornea has a different
curvature than the rest of eyeball. In that case, the size and the location of the Purkinje images can
not be readily determined. '

It has been indicated that the edge detection method is sensitive to the high-frequency image noise
[18]. Correspondingly, the area detection method is sensitive to the low frequency image artifacts
such as droopy eyelid and Purkinje images. The pupil tracking algorithm that is introduced in this
paper, which is called the disk-fitting algorithm henceforth, is an alternate area-detection method
which minimizes the effect of image artifacts on the performance of the measurement by adopting a
pupil model. It searches for the best fit of the pupil as a circular disk area. The main advantage of
this approach is its robustness to various kinds of image artifacts, since it is capable of neglecting



small occlusions or outliers for the sake of getting the best fit of the entire pupil. The disk-fitting
algorithm can stand alone and be used to derive the pupil size and center coordinates, or can be
combined with iris tracking techniques to derive precise 3-D measurement of eye movements. It
not only measures the size and the location of the pupil correctly, but also makes the succeeding

torsion calculation be as accurate as it can get.

2.0 Disk-Fitting Algorithm

2.1 Assumptions

Under proper illumination, the pupil itself is easily distinguished from the rest of the image by a
substantial margin of brightness. Therefore, the pupil-tracking algorithm is based on a binary
image which is a thresholded version of the original gray-scale image. (The method to choose the
optimal threshold value is described in section 2.4.) For the binary image, pixels which meet the
pupil threshold criteria are designated as black while all others are designated as white. Usually,
eye images are contaminated by image noise and artifacts which corrupt the binary image in various
ways. Random image noise, shadows from uneven illumination, and, more frequently,
obstructions of the pupil from light reflections or eyelids are common sources of the corruption
which result either in pixels outside the pupil area being thresholded (outlier) or pixels inside the
pupil being excluded (occlusion). The robustness of the algorithm to these types of corruption is

examined in detail in section 3.

In the binary eye image, the pupil is assumed to be a black circular disk. Three parameters
represent the pupil: the horizontal and the vertical coordinates of the center point, and the radius.
These three parameters constitute a pupil parameter vector. A circular disk defined by a pupil
parameter vector will be interchangeably called a pupil candidate in this paper. The main role of the
disk-fitting algorithm is to find the optimal pupil candidate which best represents the real pupil in
the binary image in a least-square-fit sense, thus presenting the elements of the corresponding pupil

parameter vector as the location and the size of the pupil.

The disk-fitting algorithm is using two-dimensional area information rather than any particular edge
information since the least-square fitting in the algorithm is based on the whole two-dimensional
image region rather than on selected pupil edge points. The disk-fitting algorithm doesn't depend
on pupil edge points, and the edge finding operation is not required.



Notations used in the algorithm derivation are as follows:

*N : the number of pixels in the image.

o/ : the binary eye image vector,

0 when white
I=, I, -, Iy}, I= .
L= Do IN), IS O ek

«P;: the i-th pixel coordinate vector,

Pi=(x;,yi)

*0: a pupil parameter vector which defines a pupil candidate,
O=(h,vr)

where s = horizontal position, v = vertical position and r = pupil radius.

*C(0): the set of pixels which are inside the pupil candidate characterized by O,
C©) ={@y)| (=) + ()2 < r2).

* Disk(i, O): the image vector including a pupil candidate defined by O,
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2.2 Derivation of Least Squares Fit

¢y

)

3)

Q)

®)

The proposed disk-fitting algorithm searches for the optimal pupil candidate in the least-squares-fit

sense which minimizes the sum of square error, E , between a given binary eye image and the

image of the pupil candidate that is

=
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i

(6)



The optimal pupil parameter vector, 5, defining the optimal pupil candidate minimizes E, that is

/Q\ =argmin E
o . (N

Expanding (6),

N N
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The first term of (8) is independent of the pupil parameter vector Q. Thus, to find the parameter
vector O that minimizes E is the same as finding a parameter vector O that maximizes the negative
reduced error (NRE), defined as the negative of the second and third terms of (8) as follows:

=

N
NRE = 2 (I; xDisk(i,0)) — Y Disk(i,0). 9)
i =1

]
—_

The terms inside the summations in NRE are either 1 or O since I; and Disk(i, O) are both binary
functions. The term inside the first summation is 1 when the i-th pixel in the image is black and is
included in the pupil candidate defined by a parameter vector O. Therefore, the first summation
indicates the number of black pixels included in the pupil candidate defined by a parameter vector
O. The second summation simply represents the number of entire pixels included in the same pupil

candidate.

From (9), the optimal parameter vector, 5, is the one which defines the pupil candidate which
maximizes two times the number of black pixels less the number of entire pixels included inside.
The optimal pupil candidate, which maximizes NRE, has two tendencies: to include more black
pixels (from the first term) as well as to get as compact as possible (from the second term). These
two tendencies counteract each other such that the optimal pupil model ends up as the best location
and size to include more black pixels while maintaining the size as compact as possible. Without
the second term the pupil model would expand to include all black pixels in the image, even

outliers, and be larger than the actual pupil.

2.3 Maximum Search

Based on the definition of NRE from (9), the optimal pupil parameter vector to maximize it must be

found. One method to accomplish this would be to calculate NRE for all possible pupil candidates,



and to select the corresponding parameter vector of the candidate which generates the maximum
NRE. This method, which will be referred to as the direct search method, is computationally too
expensive to be implemented in practice since the number of all possible pupil candidates could be
enormous depending on the image size. Therefore, we need to optimize the search for the optimal

pupil parameter vector for a practical implementation of the disk-fitting algorithm.

2.3.1 Comparison Search Method

The NRE characteristic on the parameter vector space provides the basis for this optimized search.
Figure 1 illustrates three artificial pupil images and their corresponding NRE surface profiles in
two-dimensional eye position vector space. The radius of the pupil candidates used in calculating
NRE, called the search radius, is set to a specific value in each NRE surface profile. The figure
shows five NRE surface profiles with different search radii corresponding to each artificial pupil
image. The search radii are the correct radius of the pupil, the smaller radii than the correct one by
5 and 10 pixels, and the larger radii by 5 and 10 pixels. NRE surface profile with smaller search
radius is placed on the left in Figure 1 (b), (c), and (d). As shown in the figures, the general shape
of the NRE surface is an inverted cone.

For the artificial image of the pupil A in Figure 1(a) which represent noiseless eye images, the
corresponding NRE surface profiles are shown in Figure 1(b). With the search radii different from
the correct pupil radius, the NRE surface profiles have a plateau on top. The plateau gets higher
and smaller as the search radius gets closer to the true pupil radius. Then, the plateau becomes an
apex when the search radius is the same as the true pupil radius. The location of the apex in the
eye position vector space is the same as the pupil center. The pupil B in Figure 1(a) represents a
pupil with typical image noise and an artifact. The circular disk structure of the pupil is
contaminated by high frequency image noise and a Purkinje image embedded in it. The general
shape of the NRE surface profiles for the pupil B, shown in Figure 1(c), is still an inverted cone
and is very close to the one from the pupil A, even though these are slightly dented. The apex is
formed with the search radius the same as the correct pupil radius, and is located at the pupil
center. Figure 1(d) illustrates the result from a different type of image artifact consisting of three
black lines crossing the pupil in the horizontal direction and one black and one white line crossing

in the vertical direction.
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Fig.1(d)

Figure 1. Artificial pupil images with corresponding NRE surface profiles in two-dimensional eye
position domain. The search radius is assumed to be known: (a) three artificial pupil images, (b)
NRE surface profiles for Pupil A, (c) NRE surface profiles for Pupil B, (d) NRE surface profiles for
Pupil C.



This kind of artifact seldom happens in a real situation, but is rather designed to demonstrate the
NRE characteristic. The NRE surface profiles for the pupil C closely resemble the profiles for
other pupils; the difference is the sharp dents introduced by the long and narrow image artifacts.
Again, the apex is formed with the search radius the same as the correct pupil radius, and is located

at the pupil center.

The inverted cone shape of the NRE surface profiles suggests that NRE increases gradually as the
pupil parameter vector is getting closer to the optimal one. This is also apparent when considering
(9) since a pupil candidate closer to the true pupil would include more black pixels and fewer white
pixels. The search for the optimal pupil parameter vector can thus be achieved by comparing the
NRE of the pupil candidate defined by the current parameter vector with those of its neighboring
vectors in the parameter space, and updating the current vector with the one that has the largest
NRE among neighbors. When the current parameter vector reaches the point of having a larger
NRE than its neighbors, that vector is considered to be the optimal pupil parameter vector. This
method of finding the optimal parameter vector by the comparison-update iterations will be referred

to as the comparison search method.

We can compare values of NRE from two adjacent parameter vectors in the parameter space by
inspecting only a small number of pixels. If pupil candidates defined by two parameter vectors
overlap, the common area contributes the same amount to the NRE of both candidates because two
times the number of dark pixels less the total number of pixels is fixed for this region; therefore,
only the data from the non-overlapping area needs to be compared. Figure 2 shows two cases of
overlapping pupil candidates defined by adjacent parameter vectors, where pupil candidate 1 and
pupil candidate 2 have the common area S. The case 1 of Figure 2 shows pupil candidates of the
same radius but with different center locations by d, and the case 2 shows two candidates of the
same center location with different radii by d. Comparison of NRE contributed by S1 and S2 in
the case 1, and S3 in the case 2, determines which candidate has the larger NRE since they are the
marginal areas. If the margin d between two pupil candidates is one pixel, the smallest quantized
step in image domain, then S1, S2, and S3 narrow to an area of just a few pixels. Only these
small number of pixels need to be examined to calculate NRE of marginal areas, and determine

which pupil candidate vector has the larger NRE.

10
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Figure 2. Comparison of two neighboring pupil candidates illustrates a common area S. Only
comparison of the non-overlapping regions, S1 from pupil candidate 1 and S2 from pupil candidate
2, is required to compare their relative NRE.

Figure 3 illustrates the relationship between the computational savings from limiting the
comparison to these marginal regions and the size of the pupil. Based on the case 1 of Figure 2, if
the comparison of the entire area is used, every pixel in area S and S1 will be included for pupil
candidate 1, and every pixel in area S and S2 will be included for pupil candidate 2. Since the area
of S1 is equal to the area of S2, the total number of pixels included in the comparison of the entire
area would be equal to two times the sum of area S and area S1. However, by limiting the
comparison to the non-overlapping areas, the number of pixels to be included in the comparison of
two pupil candidates can be reduced to the sum of areas S1 and S2 (which is equivalent to two
times the area of S1). The difference in number of pixels required for these two approaches can be
expressed as a ratio of the size of the area S1 (corresponding to a comparison search of the non-
overlapping regions only) to the size of the area S plus area S1 (representing a search of the entire
pupil regions). As shown in Figure 3, this size ratio becomes smaller as the radius gets larger,
meaning that there are more computational savings for a larger radius. A similar relationship exists

for the case 2 of Figure 2.
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Figure 3. Ratio of the size of areas required to compare two pupil candidates using only the non-
overlapping regions (S1) versus the entire pupil areas (arca S+ area S1). As shown, this size ratio
varies as a function of pupil radius.

2.3.2 Look-Up Tables for Relative Pixel Coordinates

Even though only the non-overlapping regions need to be compared, the comparison search
method still requires a large number of calculations to determine which pixels are included in the
marginal areas such as S1, S2, and S3 in Figure 2. However, if the step size d between two
parameter vectors to compare is fixed to a certain value throughout the whole search process, the
process can take advantage of a look-up table specifically designed for comparing pupil candidates
separated by the certain distance. For different geometric relationships between the current and the
neighboring pupil candidates to compare, the relative pixel coordinates in the marginal areas
relative to the center of the current pupil candidate can be predetermined and stored in different
look-up tables. Using these tables, only additions are required to determine the absolute position
of pixels in the marginal areas. Besides reducing the overall number of calculations required, the

absence of multiplication steps in the calculation is a key source of computational savings.
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The adjacent pupil parameter vectors compared with the current one in a comparison-update
iteration may include all of the 26 surrounding grid points in 3D parameter vector space, or just the
6 surrounding points located along the three major parameter axes (horizontal position, vertical
position, and pupil radius). Both have similar converging paths for the optimal pupil candidate. In
the current system implementation, the 6-neighbor system is used with the look-up tables since it

requires fewer computations.

2.3.3 [Initial Parameter Vector

Since the comparison search method uses iterative updates of the current parameter vector, the
choice of the initial parameter vector plays an important role in the convergence characteristic of the
algorithm. Without any prior information on eye movements, one reasonable choice for the initial
pupil parameter vector for each image frame is the parameter vector determined for the previous
frame. An alternative is to use the result of a centroid algorithm. Figure 4 compares these two
approaches by plotting histograms of the number of iterations required to converge on the optimal
parameter vector using a set of typical yaw rotatory test data. During such an experiment, the
subject passively rotated in darkness using a sum-of-sines profile with a frequency range from
0.02 Hz to 1.39 Hz. This recording lasts approximately 370 seconds, and includes approximately
50 eye blinks. As shown in Figure 4, both methods provide good first approximations, and
usually require less than 10 iterations to complete the comparison search for the optimal parameter

vector,

Although both types of initial parameter vector converge to the same result, using the optimal
parameter vector for the previous frame as a starting point is better for this data set than using the
centroid estimate, typically requiring less than 5 iterations to converge. The greater number of
iterations required when using the centroid estimate as an initial vector may result from
measurement bias of the centroid algorithm since the pupil is partly occluded by a droopy upper
eyelid during part of this run and there are light reflections within the pupil boundary. The number
of iterations required when the parameter vector from the previous image is used as an initial vector
depends directly on the velocity of the eye movement. The slower the eye moves, the less the
number of iterations are required for each image frame. The choice between the two methods
might depend on how dominant the image artifacts are, and how fast the pupil parameters are
changing. There is an obvious extra computational cost involved in executing the centroid
algorithm. For most of the data collected in our laboratory, using the optimal parameter vector of

the previous image frame has been far more efficient.

13
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Figure 4. Iterations required to converge on optimal pupil model using the results from the
previous frame as initial parameters (circle marks) versus the centroid estimate of the current frame
as initial parameters (cross marks).

2.4 Image Threshold

Since the disk-fitting algorithm relies on binary images derived from the gray-scale video frames,
establishing the proper threshold is important for the accuracy of the algorithm. Several techniques
have been published for choosing the optimal threshold in various senses of optimality [21]. For
the disk-fitting algorithm, a new optimality criterion is defined to minimize the least-square-fit
error. A binary eye image based on any threshold value has its own optimal parameter vector wit